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When a DNA profile obtained from a crime scene and there is a 

reference DNA profile to compare we need some way to assess 

the significance of the similar or different allelic information 

 

A statistical weighting 

 

The way that this statistical weighting is generated has a lot of 

population genetics and statistics behind it 

 

I will just scratch the surface of some of the key ideas 

 

Hardy Weinberg 

Equilibrium 

To apply a statistical weighting we must know the ‘rarity’ of 

the DNA profile we are examining. 

 

This is governed by the ‘rarity’ of the components (alleles) 

that make up the reference DNA profile in the population of 

interest: 

p2+2pq+q2=1 

Works for ‘ideal’ population i.e. one that is in Hardy Weinberg 

equilibrium 

 

Genotype frequencies are constant between generations and 

all frequencies sum to 1 

So for example – we wanted to calculate a profile frequency 

for a homozygous locus [A,A] where the frequency of [A] is 0.3: 

Profile frequency = p2 = (0.3)2 = 0.09 

Or Heterozygous locus [A,B] where the frequency of [A] is 0.3 

and [B] is 0.7: 

Profile frequency = 2pq = 2(0.3)(0.7) = 0.42 

Why is 2 out the front here for 

heterozygotes? 
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In our population where p = 0.3 and q = 0.7 we would expect 

genotypes in the following proportions: 

A B 

A AA (0.32)=0.09 AB (0.3x0.7)=0.21 

B AB (0.7x0.3)=0.21 BB (0.72)=0.49 

A heterozygote individual who contains an [A] and a [B] could 

actually be [A,B] or [B,A] = pq + qp = 2pq 

 

And p2+2pq+q2=(0.3)2+2(0.3)(0.7)+(0.7)2 = 0.09+0.42+0.49 = 1 

A B C D E F 

A 0.22=0.04 0.2x0.3=0.06 0.2x0.2=0.04 0.2x0.2=0.04 0.2x0.05=0.01 0.2x0.05=0.01 

 

B 0.2x0.3=0.06 0.32=0.09 0.3x0.2=0.06 0.3x0.2=0.06 0.3x0.05=0.15 0.3x0.05=0.15 

C 0.2x0.2=0.04 0.3x0.2=0.06 0.22=.0.4 0.2x0.2=0.04 0.2x0.05=0.01 0.2x0.05=0.01 

 

D 0.2x0.2=0.04 0.3x0.2=0.06 0.2x0.2=0.04 

 

0.22 =0.04 0.2x0.05=0.01 0.052=0.0025 

 

E 0.2x0.05=0.01 0.3x0.05=0.15 0.2x0.05=0.01 0.2x0.05=0.01 0.052=0.0025 0.052=0.0025 

F 0.2x0.05=0.01 0.3x0.05=0.15 

 

0.2x0.05=0.01 0.2x0.05=0.01 0.052=0.0025 0.052=0.0025 

This idea can be extended to multi-allele scenarios, e.g. consider a 

population with frequencies A=0.2, B=0.3, C=0.2, D=0.2, E=0.05, F=0.05 

These genotype proportions are only valid under the 

assumption of Hardy Weinberg equilibrium. i.e. random 

mating, large population, no mutation, no selection and no 

migration. 

This island 

population is in 

Hardy Weinberg 

equilibrium (imagine 

there are an infinite 

number of dots) 

 have the genotype [Y,Y] 

 have the genotype [B,Y] 

 have the genotype [B,B] 

Hardy Weinberg Island 

This is the same population after 50 generations 

Because the population is in HWE genotype frequencies remain 

constant and the population remains the same 

Hardy Weinberg Island 

Oh No! Someone 

from West HWI has 

started a feud with 

someone from East 

HWI. 

 

The island is divided 

 

The population sub-

structure now means 

that there is no more 

random mating 

(which violates one 

of the requirements 

for HWE) 

Hardy Weinberg Island 

After one 

generation 

there would be 

no difference 

 

So lets speed it 

up a little and 

power through 

a few more 

generations 

Move forward by 1 generation 

Hardy Weinberg Island 
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Generation 10 

Lets also 

introduce 

mutation and 

genetic drift. 

 

Some minor 

differences seen 

in some 

individuals on 

either side of the 

island 

Hardy Weinberg Island 

differences 

increasing 

Generation 30 

Hardy Weinberg Island 

differences 

increasing 

Generation 50 

Hardy Weinberg Island 

Genetic drift has 

lead to 2 

genetically 

distinct 

populations 

Generation X 

What would happen if we still assumed HWE ?? 

Hardy Weinberg Island 

A crime is committed on 

West HW island and the 

evidence at the scene is 

[Y,Y] 

 

The HW police have a 

suspect who is also 

[Y,Y]  

[Y,Y] 

[B,B] 

Hardy Weinberg Island 

[Y,Y] 

[B,B] 

The HW forensic 

science centre knows 

that the frequency of [Y] 

is 0.5 and [B] is 0.5 and 

conclude that the 

frequency of [Y,Y] (i.e. a 

yellow dot person) is: 

 

p2 = 0.52 = 0.25 

Hardy Weinberg Island 
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Frequency [Y,Y] = 0.25 

 

So the report says “The 

chance of seeing this 

genotype in another 

unrelated individual is 1 

in 4”  

Hardy Weinberg Island 

[Y,Y] 

[B,B] 

But every individual on 

west HW island is [Y,Y] 

and so the chance of 

seeing this profile again 

in another east HW 

island is 1 in 1. 

 

By assuming the 

population is in HWE 

the strength of the 

evidence has been 

grossly overstated. 

Hardy Weinberg Island 

[Y,Y] 

[B,B] 

i.e. allele frequencies cannot be used to accurately determine 

genotype frequencies any longer 

The imperfect 

world 

Reality Island 

Ideally we would recognise the fact that the population is not in 

HWE and we would calculate the statistic in a database of only 

west HW Island individuals. 

Reality differs from the 

ideal model in a 

number of ways. 

 

We will pick up the 

population from where 

we left off 

Old boundaries 

forgotten – there 

may be some 

mating between 

populations at the 

border 

Reality Island 

People may 

migrate over 

the border 

and modern 

technology 

allows travel 

from one side 

of the island 

to the other 

Reality Island 
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Rare mutations 

will occur, 

which will make 

some 

individuals very 

different from 

the general 

population 

Reality Island 

Selection 

comes into play 

when disease 

hits the island 

and it turns out 

one of the 

genotypes is 

susceptible 

Reality Island 

Migrations from 

far off lands will 

introduce exotic 

genotypes into 

the island 

Reality Island 

Now the picture is much 

more like reality. 

 

Clear boundaries do not 

exist but general trends 

can be seen 

Reality Island 

Population 

databases 

In reality we aren’t able to obtain the genotypes for every 

individual in the population. 

 

Practically we can only obtain samples from a small 

percentage of the population, and then use that to draw 

inferences about the whole population. 

 

The subsets of individuals are called population databases, 

and they are used to determine allele frequencies. 
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Convenience – The sample is not truly random, it is built from a 

collection of individuals that we have profiled in the course of 

casework. 

 

In reality the markers that we examine are not selective with respect to 

crime and so a convenience database can be considered effectively 

random 

 

 

Self-declared – the ethnicity of the individuals are on the basis of self 

declaration 

 

Once again this isn’t perfect as there is no checking of the claims of the 

suspects, however this type of collection has been shown to produce 

databases that are for use in a forensic setting 

How we generate a population database in 

practise 

Once the individuals have been chosen their profiles are 

compiled and the number of occurrences of each allele 

counted and divided by the total number of alleles to 

determine allele frequencies 

 

These allele frequencies are listed in a table in such a way 

that the data is easily accesable 

 

Using the example: 
Taylor DA, Henry JM, Walsh SJ. South Australian Aboriginal sub-population 

data for the nine AMPFlSTR Profiler Plus short tandem repeat (STR) loci. 

Forensic Sci Int Genet. 2008 Mar;2(2):e27-30.  

How we generate a population database in 

practise 

How we generate a population database in practise 

A number of tests are then performed on the data 

- count of the number 

of alleles at each locus 

- The expected and 

observed 

heterozygosities 

- The Fischer’s exact 

tests for adherence to 

HWE 

- The probability of 

excluding paternity 

- The probability of 

discrimination 

Back to our earlier example 

 

We will go through some of the population database 

construction and considerations 

The box shows the 

individuals sampled in 

our population 

database 

16 [Y,Y] 

17 [B,B] 

3 [B,Y] 

1 [B,D] 

37 In total  

Population Databases 
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16 [Y,Y] 

17 [B,B] 

3 [B,Y] 

1 [B,D] 

37 In total  

Population Databases – Allele frequencies 

32 [Y] alleles 

34 [B] alleles 

3 [B] alleles and 3 [Y] alleles 

1 [B] allele and 1 [D] allele 

74 alleles in total 

Allele frequencies can be calculated by:  
# alleles 

Total # alleles 

e.g. for [Y] frequency (pY)= 
74 

32+3  

= 0.473  Or  47.3% 

Similarly pB= 51.4% and pD = 1.3% 

There is an obvious 

problem with this 

database 

 

It spans two 

populations and so 

contains substructure 

 

But how could you tell 

just from the data that 

was collected ? 

 

We will come back to 

this a bit later 

Population Databases 

A better approach would be, once it is recognised that there is 

some structure in the population, to sample the two 

populations separately e.g. 

Population 

Database 1 

Population 

Database 2 

Population Databases 

These databases still aren’t in HWE, but will give closer 

estimates of genotype frequency from the allele frequencies. 

 

They may or may not show departures from HWE when tested 

for departures from equilibrium using the Fisher’s Exact test. 

 

The Fisher’s Exact test is quite weak in its ability to detect 

these departures 

Population Databases 

We expect human populations to depart from HWE (even if we 

don’t detect any) 

 

Why is this ? Because we violate the assumptions required for 

HWE, i.e. 

- We don’t randomly mate 

- We immigrate and emigrate 

- Mutations occur 

- There may be some selective pressures 

- Our population size isn’t infinite 

Population Databases 
So if we can’t use 

the HWE formulae 

(p2 and 2pq) to 

determine genotype 

frequencies then 

what can we do ? 

 

We need some way 

to take into account 

the fact that people 

in a finitely sized 

population are 

distantly related and 

hence……inbred 

But very distantly This means that some alleles 

are more common (and by the 

inverse others would be rarer) 

than under HWE estimates 
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Inbreeding 

Coancestry 

 Substructure 

DNA profiles from current forensic profiling kits can have frequencies in the 

order of 1 in 1022 

 

 

This means that it each DNA profile is incredibly rare 

 

 

However given that we have seen a profile already, it makes it more likely 

to see that profile again 

 

 

This is because populations are not infinitely large and the choice of mate is 

not random (violations of the HWE model) 

Theta 

population  

sub-population  

family  

These 

would be 

the only 

generations 

alive  

Theta 

population  

sub-population  

family  

Looking at the population that is alive at the present day we 

would see a picture more like that shown below 

 

Regardless of which individuals breed within a subpopulation 

there is going to be a distant level of relatedness between 

them (theta) 

Theta 

An allele from anyone on the left has 

0 probability of being IBD to anyone 

on the right. 

No 

breeding 

between 

sub-

populations 

Theta 

This means if we have a profile from 

someone on the left it won’t give us 

any information about how common 

the profile is on the right 

Theta 
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Within a sub-population 

there are only a finite 

number of individuals, and so 

eventually a level of 

inbreeding within the sub-

population will build up 

 

Inbreeding reduces genetic 

diversity and drives loci 

towards fixation (only 

containing one allele) 

Theta 

This effect is balanced out 

by mutation, which 

introduces new alleles into 

the population 

The effect on ‘normal’ sized human populations is that some 

alleles are more common in certain sub-populations than in 

others. 

Theta 

Genetic drift causes allele 

frequencies to change 

over the generations. 

 

Some alleles will drift to 

become more common 

 

Others will drift to be lost 

in the population 

 

If only genetic drift was 

acting then eventually all 

loci would become fixed 

for an allele 

However mutation 

counteracts drift by 

introducing new alleles 

into the population 

 

When two sub-populations 

are reproductively 

isolated then genetic drift 

will act independently on 

both and cause allele 

frequencies to differ 

 

Sub-populations 

The smaller the isolated 

population, the quicker the 

effects of genetic drift will be 

 

 

Inbreeding magnifies the effect 

of genetic drift by reducing the 

effective population size 

Lets look at smallest possible populations 

to show how inbreeding causes populations 

to develop different allele frequencies 

 

2 men and 2 women who form a very small 

population 

Person1 says – I only want to breed with person2 

Person2 – ok 

Person3 – Well then I only want to breed with person4 

Person4 – ok 

Person1 

[A,B] 

Person2 

[C,D] 

Person3 

[A,B] 

Person4 

[C,D] 
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Person1 

[A,B] 

Person1 

[C,D] 

Person3 

[A,B] 

Person4 

[C,D] 

[A,C] 

[A,A] 

[A,A] 

[A,D] 

[A,D] 

[A,A] 

[A,C] 

[A,B] 

[B,C] 

[B,D] 

[C,B] 

[B,B] 

pA=0.25, pB=0.25, 

pC=0.25, pD=0.25 

For both sub-pops 

pA=1, pB=0, pC=0, pD=0 pA=0, pB=0.75, 

pC=0.25, pD=0 

Alleles randomly 

passed on to 

offspring cause 

allele frequencies 

between the two 

subpopulations to 

differ 

1. Common theta used in forensic calculations: 

Caucasian  θ = 0.01  (1%) 

Aboriginal  θ = 0.03  (3%) 

2. Thetas that correspond to familial relationships 

First cousins  θ = 0.063  (6.3%) 

Second cousins  θ = 0.016  (1.6%) 

 

Notice theta use in forensic setting are high compared 

to what you would might expect (i.e. the theta of 1% 

for Caucasians suggests that we might be regularly 

inbreeding to a level close to second cousins) 

- We always try to concede as much doubt to the 

defendant as is reasonable– i.e. the higher the level of 

theta, the more potential inbreeding we are accounting for 

and this will make the profile of interest more likely to be 

seen again in that population 

 

- Theta’s use is two-fold. As well as a co-ancestry 

coefficient it can also be used as a measure of the genetic 

distance between populations. So we can use a higher 

value to take into account the fact that relevant database 

might be different to our allele freq database 

Theta as a measure of distance between populations also 

explains why theta is higher in Aboriginal groups than for 

Caucasian groups. 

population  

sub-population  
family  

θ2 

θ1 θ3 

θ1 is needed to describe the diversity within subpopulation 1 

θ2 is needed to describe the diversity within subpopulation 2 

θ3 is needed to describe the diversity within the entire 

population 

θ2 

θ1 θ3 

Now we need to look at the population structure of Aboriginal 

and Caucasian Australians Horton map 
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θ1 is needed to describe the diversity within a tribe 

θ2 is needed to describe the diversity within a traditional 

regional group 

θ3 is needed to describe the diversity within the entire state 

θ2 - Region θ1 - Tribe θ3 - State 

Caucasian are a lot more boring… 

 

Tend to be the same all over the world, with very little 

geographic substructure 

 

This means that a smaller theta can be used to cover the 

genetic diversity within Caucasians 

θ1 - World 

Match 

Probability 

We need some way of taking this inbreeding into account, and 

we do this with the use of θ, a co-ancestry coefficient (also 

called theta, or FST) 

 

θ was most knowingly incorporated into a matching statistic in  

a 1994 paper by Balding and Nichols (Forensic Science 

International 64:125-140, 1994) 

 

Strictly speaking the definition of theta is “The proportion of 

times that two alleles randomly chosen in a population will be 

Identical By Descent (IBD)” 

Matching statistics – Match Probability 

IBD alleles are when two alleles of the same designation have 

originated from a common ancestor, rather than by mutation 

 

So we can now move away from profile frequencies and the 

Hardy Weinberg formulae (known as the product rule formulae) 

and onto a conditional probability called a Match Probability 

that incorporates θ 

 

More about this in a bit later 

Matching statistics – Match Probability 

The Match Probability does not make the assumption of HWE 

and so is a more appropriate matching statistic to use for 

human populations. 

 

It tells us the probability of seeing a profile a second time given 

that we have already seen that profile once 

 

i.e. if the suspect is [A,A] (and we are assuming that the 

suspect is not the offender) then we want to know the 

probability of seeing [A,A] again (in the true offender). This is 

written as Pr(AA|AA) when the “|” means ‘given that we’ve 

seen’ 

Matching statistics – Match Probability 
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AAAA

For homozygote [A,A] 
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 BA pp
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For heterozygote [A,B] 

Matching statistics – Match Probability Matching statistics – Match Probability 

If you assume that there are no dependencies in the data and 

set θ = 0 then the match probability formulae cancel down to 

the HW product rule formulae: 

 

A2 

2AB 

 

However if we choose a value for θ of 0.01 (the approximate 

value that would correspond to a typical Caucasian population) 

then our frequency estimates from the earlier example would 

change: 

pY = 0.473 

 

pB= 0.514 

 

pD = 0.013 

Population Databases 

[Y,Y] 

[B,B] 

[B,Y] 

[B,D] 

[Y,Z] [R,R] 

[B,R] 

Matching statistics – Match Probability 

In our dataset we have pY = 0.473, pB= 0.514 and pD = 0.013 

Assuming HWE 

genotype frequency of [B,Y] = 2pq = 2(0.514)(0.473) = 0.486 

Using theta 

match probability of Pr(BY|BY) = 

))01.0(21)(01.01(

]486.0)01.01(01.0][514.0)01.01(01.0[2





= 0.495 

Confidence 

Intervals 

Population databases – 

confidence intervals 

Population database 

frequencies: 

pY=0.473 

pB= 0.514 

pD = 0.013 

 

If we profiled everyone 

on the island we would 

see the true 

frequencies are: 

pY=0.468 

pB= 0.452 

pD = 0.008 

pR = 0.056 

pZ = 0.016 

[Y,Y] 

[B,B] 

[B,Y] 

[B,D] 

[Y,Z] [R,R] 

[B,R] 

Close but not the same 
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Image that the group of individuals we chose for the database 

were, by chance, different than those we actually chose 

The allele frequencies 

we will differ from the 

allele frequencies 

calculated using the last 

database (which will 

both be different from 

the true allele 

frequencies in the 

population. 

Population databases – 

confidence intervals 

Take Allele ‘Z’ for 

example. We know that 

in the population 

pZ = 0.016 

 

In our first database we 

did not observe ‘Z’ so: 

pZ = 0 

 

In the database seen 

here: 

pZ = 0.031 

Population databases – 

confidence intervals 

Now imagine 

databases being 

randomly chosen 

from the population 

many times 

 

frequencies of alleles 

will vary but will be 

distributed around 

the true value in the 

whole population. 

Population databases – 

confidence intervals 

Using allele ‘Z’ as an 

example we would 

expect a distribution 

of allele frequencies 

for ‘Z’ that would 

centre around 0.016 

(the true value in the 

population) but will 

deviate slightly either 

side. 

 

This is called 

sampling variation 

Population databases – 

confidence intervals 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

The distribution below shows the spread of allele frequencies 

that repeated sampling of databases has produced for allele ‘Z’. 

Frequency 

0.016 

proportion of 

databases 

that showed 

‘Z’ at the 

frequency 

Population databases – 

confidence intervals 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Frequency 

0.016 Our match probability 

calculation: 

Pr(BY|BY)=0.495 

 

But now take into 

account that sampling 

variation means that 

allele frequencies will 

differ depending on 

how the database is 

chosen 

Population databases – 

confidence intervals 
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Using the distribution of allele frequencies (caused by sampling 

variation) we calculate a distribution for the match probability. 

Match probability 

The Match probability 

point estimate: 

Pr(BY|BY)=0.495 

which is the apex of 

the graph. 

 

We choose a 

percentage of this 

curve to determine the 

confidence intervals 

that takes sampling 

variation into account 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Population databases – 

confidence intervals 

For example a 99% confidence interval takes the inner 99% of 

the area under this curve:  
Typically report the MP 

i.e. 0.6, as that is 

conceding doubt to the 

defendant 

 

NOTE: Using the allele 

frequencies of the whole 

population (PB=0.452 & 

PY=0.468) we would 

obtain: 

Pr(BY|BY)=0.42 (which is 

captured within the 99% 

confidence intervals) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Match probability 

99% 

of 

the 

area 

0.5

% of 

the 

area 

0.5

% of 

the 

area 

0.37 0.6 

Population databases – 

confidence intervals 

From the database shown we have the following: 

frequency [B,Y] =0.486           (assuming HWE) 

Pr(BY|BY)=0.495                    (taking co-ancestry into account) 

99% Pr(BY|BY)=0.37 to 0.6    (with sampling variation) 

Population databases – 

confidence intervals 

But the true rarity of [B,Y] (from a simple count of the green 

dots) is 0.074 

Which is very different from any of our calculated values. 

no amount of 

mathematical adjustments 

are going to overcome a 

poorly constructed 

database (like the one 

seen here, which spans 

multiple populations). 

 

This is where database 

validation and Fisher’s 

exact test become VERY 

important 

Population databases – 

confidence intervals 

Validating 

Databases 

Validating databases 

There are tests that we subject our population database to 

prior to using them. 

 

This is to ensure they are fit for forensic use. 

 

There are many many many forensic papers that describe 

population databases for countries and groups all over the 

world, all of which will have had some analyses undertaken on 

them. 
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Validating databases 

As mentioned earlier, the simplest of these tests is to examine 

the database for outlying or unusual entries 

 

For example in our database the single ‘D’ allele might be 

checked to make sure it is a legitimate allele. 

 

There are other, more biologically focused, tests we perform to 

assess the data. 

Validating databases – Fisher’s Exact Test 

Used to test for departures from HWE either through 

dependencies in alleles within a locus (Hardy Weinberg 

disequilibrium) or between loci (linkage disequilibrium) 

 

Determines the probability of obtaining the genotype 

frequencies given the observed allele frequencies 

 

For those of you who like formulae: 
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PC = the conditional probability of the genotype counts 

ng = the genotype counts 

nlj = the allelic counts 

n = the number of alleles 

H = the total number of heterozygotic loci in the sample 
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This probability is then compared to all permutations of the 

data and the probabilities of all values lower than the computed 

one are added together to give the p-value. Looking at [A] and 

[B] simplifies the formulae to: 

If the p-value is less than your cutoff (e.g.5% or 0.05) then your 

dataset shows some signs of departure from HWE  

Validating databases – Fisher’s Exact Test 

Think back to this 

example of a poorly 

constructed database 

16 [Y,Y] 

17 [B,B] 

3 [B,Y] 

1 [B,D] 

Observed genotypes 

Validating databases – Fisher’s Exact Test 

In our dataset we have pY = 0.473, pB= 0.514 and pD = 0.013 so 

we would expect: 

Genotype Expected Observed 

[Y,Y]  8  16 

[B,B]  10  17 

[B,Y]  18  3 

[B,D]  0.5  1 

Without carrying out the complete Fisher’s test, allele 

frequencies are not estimating genotype frequencies very 

accurately. 

 

But could this just be by chance ? 

Validating databases – Fisher’s Exact Test Multi-testing problem 

Some comparisons may show significant departures from 

equilibrium 

 

This does not necessarily mean that these dependencies exist 

 

For a database in perfect equilibrium we would expect that the 

p-values would be evenly spread over the range 0 to 1 (as the 

exact tests are based on random reshufflings of the data) 
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Multi-testing problem 

For a p-value cut-off of 0.05 we would expect that if no 

dependencies existed then 5% of comparisons would show a 

significant departure for equilibrium by chance alone. 

 

The more tests we do the more significant p-values we will 

get and this is the multi-testing problem. 

 

With 15 Identifiler loci there end up being 120 comparisons 

being done so we would expect approximately 6 to have p-

values < 0.05 

 

Needs to be taken into account when assessing HWE/LE 

departures 

Multi-testing problem 

Two ways of dealing with multi-testing problem: 

- A graphical representation 

- A truncated product method 

 

The graphical method is appealing and visually easy to 

understand. It is based on the idea that for multiple Fisher’s 

exact tests the p-values (for a database with no 

dependencies) should be evenly spread over the range 0 to 1 

 

This means that if all the p-values were ordered in ascending 

order then they should fall on a line with the equation y=x 

Multi-testing problem 
Graph the ordered p-values against the expected values to 

produce a p-p plot 

y=x line 

Observed vs expected 

values 

95% ‘envelope’ 

Multi-testing problem 

Databases that do not contain dependencies will fall within the 95% 

envelope, databases that do contain dependencies will fall outside 

 

Below are two pan-Australian databases for Aboriginal and 

Caucasian database 

Multi-testing problem 

The second method for assessing departures from HWE and 

LE is the truncated product method. 

 

 

This method considered all the p-values together to see 

whether there is evidence that the results from the multiple 

tests, as a whole, show evidence for significance 

Multi-testing problem 

The truncated product method states that the sum of -2ln(p-

values) from ‘t’ independent tests should have a chi-squared 

distribution with 2t degrees of freedom 

 

If you are interested in reading about why this is then read the 

paper: 

 

Zaykin, D., Zhivotovsky, L. A. and Weir, B. S. (2002) 

Truncated product method for combining p-values. Genetics 

and Epidemiology 22: 170-185. 
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Multi-testing problem 

=Chidist(50.66, 40) 

This method is most easily carried 

out in Excel 

 

FGA is showing a significant p-value 

 

But overall data has no significant 

disequilibrium 

 2t d.o.f. 

Locus p-value 
-2ln(p) 

HWE 

CSF 0.53 1.26 

D12 0.10 4.68 

D13 0.26 2.72 

D16 0.51 1.37 

D18 0.25 2.74 

 

TPOX 0.35 2.13 

vWA 1.00 0.00 

Sum[-2ln(p)] 50.66 

p-value 0.12 

 

 Sum[-2ln(p)] 

FGA 0.01 9.09 

 

Delving further into Fisher 

You can delve a little further into dependencies by looking at the 

observed numbers of genotypes against the expected number at each 

locus (based on allele frequencies) 
Genotype [8,11] 

Genotype [9,14] 

Counts of alleles 

are shown in the 

right hand column 

and bottom row. 

 

Combined with the 

total these can be 

used to generate 

expected genotype 

frequencies 

Delving further into Fisher 

If in equilibrium these values should adhere to a chi-squared distribution 

with 1 degree of freedom, so for a 95% confidence interval the 1 d.o.f. 

chi-squared critical value is 3.84 

 

This means that if we calculate the value: 

 
Expected

ExpectedObserved
2


Any values > 3.84 are a 

significant departure 

Delving further into Fisher 

Doing this can give you some further information that the p-values alone 

would. 

 

It can tell you that disequilibrium is being caused by a few rare 

genotypes 

 

Also if significant values are on the diagonal (indicating an excess of 

homozygotes) then this can indicate the database has substructure 

This excess homozygosity 

from grouped populations 

is known as the Wahlund 

effect 

A quick word 

about Linkage 

Gregor Johann Mendel (1822 – 1884)  

Austrian Augustinian monk and scientist 

 

Studied inheritance of certain traits in pea 

plants 

Linkage 

The law of segregation – Each individual has two ‘factors’ controlling a 

given characteristic, one being a copy of a corresponding factor in the 

father of the individual and one being a copy of the corresponding factor 

in the mother of the individual. Further, a copy of randomly selected one 

of the two factors is copied to each child, independently for different 

children and independently of the factor contributed by the spouse. 
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Thomas Hunt Morgan (1866 – 1945)  

American evolutionary biologist, geneticist and 

embryologist  

 

Found that Mendel’s laws did not always hold 

true. 

 

He found that some characteristics in 

Drosophila did not randomly assort as expected 

Linkage 

Morgan had shown that some genes were linked  

Linkage 

i.e. If these two distant points were 

originally in phase (i.e. originally on the 

same chromosome) then they are 

equally likely to be end up on the same 

chromosome as different 

chromosomes at the end of meiosis 

phase I 

Crossing over is when genetic material 

is shared between homologous 

chromosomes at points of 

recombination 

 

When two points on a chromosome 

are separated by a large distance then 

the chance that recombination will 

occur between them is high 

Linkage 

When the sites on the chromosome 

are not distant from each other then 

it is less likely that a recombination 

will occur between them during 

meiosis 

 

This means that the two loci will be 

inherited together as one unit 

 

If two loci that are initially in phase 

are both inherited more often than is 

expected by random assortment then 

they are considered to be linked 

Linkage 

Fisher’s Exact does not actually detect linked loci purely 

because they are linked 

 

It detected linkage disequilibrium in a population 

 

A population that is many generations removed from an 

‘evolutionary event’ may have partially linked loci that do not 

show any signs of linkage disequilibrium. 

 

Linkage disequilibrium is often detected in partially linked loci 

usually because they take a longer time to re-equilibrate.  

When a population undergoes an evolutionary event, all loci 

(linked or not) will be in linkage disequilibrium. 

 

Examples of an evolutionary event include: 

 

- Bottleneck: When a population is reduced to less than half 

its size. 

 

- Founder Effect: A population that has arisen from a small 

group of ‘founders’ 

Linkage 

- Gene flow: The exchange of genes between populations 

(this does not require the physical movement of individuals, 

only their genes) 

 

- Selective sweep: When a gene spread throughout a 

population due to some positive selection. 

 

Often native populations will have undergone these events 

and so be in linkage disequilibrium 

Linkage 

http://upload.wikimedia.org/wikipedia/commons/4/45/Morgan_crossover_2.jpg
http://upload.wikimedia.org/wikipedia/commons/4/45/Morgan_crossover_2.jpg
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Linked loci will take longer to reach a level of equilibrium 

than unlinked loci. 

 

The amount of linkage disequilibrium (D) in a population, ‘n’ 

generations after an evolutionary event can be determined 

by:  

D0 = the level of linkage disequilibrium caused by the 

evolutionary event. 

0)1( DRD n

n 

Linkage 

The graph below shows the re-equilibration with an initial level 

of linkage disequilibrium, D = 0.1 with various levels of 

Recombination (R).  

Linkage 

Completely linked loci (i.e. those where recombination 

never occurs) will never be able to recover from the 

evolutionary event 

 

Completely unlinked loci half the amount of linkage 

disequilibrium each generation – But will still show some 

linkage disequilibrium 

 

This is the reason that linkage equilibrium has the addition 

required assumption (beyond HWE assumptions) that an 

infinite number of generations has elapsed since any 

disturbing force. 

Linkage 


